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We consider the morphology of fullerene families which have negative Gaussian curvature, formed
by the introduction of seven- or eight-membered rings in a graphite sheet. The existence of seven-
or eight-membered rings makes it possible to form a sponge-shaped periodic graphite network of
carbon atoms in three-dimensional space. We first propose a construction method for the struc-
tures, which we will call spongy graphite, based on polyhedral geometry. Infinite spatial networks of
equilateral triangles and hexagons can be obtained by space filling or open packing of regular icosa-
hedra, octahedra, tetrahedra, and truncated octahedra which have triangular or hexagonal faces.
We demonstrate the formation of various types of spongy graphite by decorating each face with hon-
eycomb patches, by which we mean triangular or hexagonal fragments of a graphite sheet. Further,
we study their electronic structures using a tight-binding model for the network of 7 electrons, and
find that such networks show a variety of electronic states including metal, zero-gap semiconductor,
and insulator, depending on the geometrical parameters.

Carbon is a unique element that bonds with itself
through diamondlike sp3, graphitelike sp?, and even
sp hybridization, and is quite different from silicon de-
spite the fact that they have the same number of va-
lence electrons. The resultant structures of regularly or-
dered allotropes of carbon are conventional diamond and
graphite, and recently discovered fullerite, i.e., Cgo crys-
tal in addition, while silicon forms only the crystal struc-
ture of diamond. It is apparent that this variety of carbon
bonding leads to the existence of polymorphous forms in
disordered carbon materials. We well know that some of
them play an important role as activated carbons, car-
bon blacks, carbon fibers, etc. In spite of the usefulness,
however, a microscopic understanding of the structures
of these amorphous carbon (a-C) has not been well es-
tablished yet. The structural complexity in a-C must go
far beyond that in amorphous silicon.

The intrinsic features of the local structure in disor-
dered carbon materials are the coexistence of two-, three-
and fourfold coordinated carbon atoms, and the presence
of five-, seven- and eight-membered rings in a graphitic
network formed by threefold coordinated carbon atoms.
The latter certainly comes from the fact that graphite,
which is most thermodynamically stable at ambient tem-
peratures and pressures, may contain some polygonal
defects in the hexagonal network. Fullerenes are con-
structed from five-membered carbon rings in soot. A
single pentagonal ring is introduced in a hexagonal net-
work of carbon atoms, i.e., a graphite sheet forms a con-
ical surface around it, and eventually the sheet can be
closed totally with 12 pentagonal rings. Therefore, the
fullerenes are considered as the latter structural disorder
in a-C, although they are molecules.

The introduction of seven- and eight-membered rings
results in more fascinating forms of fullerene families by
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producing Gaussian negative curvature on a honeycomb
network. Their appearance has already been suggested
by the observation of morphologies of fullerene tubules
via transmission electron microscopy.l»? The possibili-
ties of the forms with heptagonal and octagonal carbon
rings were theoretically discussed for fullerene tubules,?
fullerene torus,* and spongy graphites® 1° where the
three-coordinated carbon networks spans periodically not
in plane but in space.

The purpose of this paper is first to propose the poly-
hedral construction of carbon forms with negative cur-
vature. Demonstrating various forms of spongy graphite
with seven- or eight-membered rings, we show how our
method is general comparing with others. Further, their
electronic states are examined by means of the tight-
binding method. The possible graphitic forms spreading
in space around a seed of a sp® carbon atom are also
mentioned.

Let us briefly review the geometry of fullerene
molecules. In our previous work,!!"12 we have proposed
the use of a projection method based on a honeycomb
lattice for describing the geometry of fullerenes consist-
ing of hexagonal and pentagonal carbon rings, where an
arbitrary fullerene is completely specified by the arrange-
ment of 12 pentagonal defects on a honeycomb lattice.
In other words, the structure of a fullerene can be re-
garded as a polyhedron with 12 vertices where the faces
are decorated with a honeycomb pattern. The vertices
of each polyhedral face are placed at the center of the
honeycomb hexagons, and at each vertex the angular de-
ficiency is 60°; thereby, a pentagonal ring is produced at
each vertex. In brief, the network of fullerenes can be
produced by the patchwork of honeycomb pieces on the
polyhedral faces.

Let us develop our argument to the honeycomb patch-
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work in space. Since it is too general a problem, for a
while we only considered the use of one kind of equilat-
erally triangular patch and sought three-dimensionally
(3D) periodic structures. That is to say, the problem
is reduced to find infinite periodic spatial structures ex-
clusively composed of equilateral triangles, although it
still sounds intricate. We find, however, that Pearce
has exhibited various possibilities!® on the same prob-
lem. His basic idea was to consider open packings using
three kinds of polyhedra: the tetrahedron, octahedron,
and icosahedron, whose faces are equilateral triangles of
a size. We exhibit two examples in Fig. 1, both of which
form the diamond structure composed of all equilateral
faces. In Fig. 1(a), we can find two octahedra at the nodal
sites of the network, whose four of the eight faces are at-
tached additional octahedra in the same directions as sp3
hybridization serving as branches; while icosahedra sit at
the nodal sites of diamond structure with branch octa-
hedra in Fig. 1(b). We note that the latter has chirality,
but the former does not. Hereafter, we call these struc-
tures formed by equilateral faces as frame A [Fig. 1(a)]
and frame B [1(b)].

Once we get an infinite spatial network of equilateral
triangles, fullerene structures expanding in space can be
constructed by just decorating each of the faces with
the triangular honeycomb patches displayed in Fig. 2.
The triangular patches are assigned to the edge vectors
(m,n) = m p+n g where p and g are the primitive vectors
of the honeycomb lattice given by (a,0) and (a, av/3)/2
(a is the lattice constant). In Fig. 3, we show the resul-
tant structures of spongy graphites by the decoration of
the (2,0) patch for the frames A and B. Since at each ver-
tex in both frames eight and seven triangular faces meet,
an octagonal and a heptagonal ring appears at each as
indicated by the shaded polyhedra. They have 325, ,
and 565, , carbon atoms in a unit cell for the sponges
of the frame A and B, respectively. Here we should note
that all of these spongy graphites are newcomers for the
3D periodic graphites with negative curvature except the
network with the (1,1) patch on the frame B, which is
found topologically equivalent to that by Vanderbilt and
Tersoff.”

We examine the electronic states of these sponge struc-
tures, based on the simple tight-binding model with a
constant transfer to, under the knowledge that in the

FIG. 1. Parts of polyhedral construction giving diamond
structure. The nodal octahedra (a) and icosahedra (b) are
lightly shaded. The darkly shaded faces on branch octahe-
dra are attached to the next nodal polyhedra in the periodic
frame.
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FIG. 2. Series of triangular honeycomb patches where
(m,n) indicates the edge vector.

graphitic materials the 7 electrons mainly contribute to
the electronic states near the Fermi level. The curva-
ture, which must be one of the important structural fac-
tors, may give the effect of reduction for %o, in a qualita-
tive stage of discussion; however, the simplified calcula-
tion is very useful to reveal the characteristic electronic
states. We should note that for fullerene tubules the
simple model of the 7 electron network explains the geo-
metrical classification between the metallic and semicon-
ducting tubules.'* The electronic states of sponges based
on the frame B are classified into the insulating states for
(1,1), (2,2), and (3,0) with gaps more than t,/3, and the
metallic states for (1,0), (2,0), and (2,1). Curious elec-
tronic states can be seen in the sponges of the frame A.
Since they are composed of only even-membered rings,
the energy band becomes symmetric within the simple
model. The electronic structures in this series of struc-
tures are insulating for (1,1) [Fig. 4(a)], (3,0) and (2,2),
and zero-gap semiconducting for (1,0) and (2,1) where
the density of states (DOS) behaves as E? near Er be-
cause they have linear dispersions around some Fermi
points. Figure 4(b) shows the structure with (2,0), which
is found to be metallic and further to have a flat band all
over the Brillouin zone. Certainly although such a spe-
cial feature is broken under more realistic calculation, the
energy band with large degeneracy may remain near the
Fermi level if this structure is achieved. For more funda-
mental interest, we note that this is an example that is
a “Kekuléan” structure, but has a flat band.'5:1¢

The other way to create spongy graphites is to use

FIG. 3. Spongy graphites constructed by using the trian-
gular patches (2,0) in Fig. 2 on the frames (a) A and (b) B in
Fig. 1.
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FIG. 4. Band structures for the spongy graphites (a)
A(1,1) and (b) A(2,0) near the Fermi level. The Brillouin
zone is depicted in the inset of (a).

the spatial network of hexagons. One of the examples is
given by the spatial filling of truncated octahedra shown
in Fig. 5(a). Considering only the connections of hexago-
nal faces, we see one of Coxeter’s three regular sponges,”
which divide space into two equal parts. Now we can eas-
ily imagine that if the series of hexagonal patches are pre-
pared, the other series of spongy graphite is constructed
where the octagonal rings appears at each vertex because
four hexagonal faces meet there. The electronic struc-
tures by the tight-binding model are found to be metallic
for (0,1) and insulating for (1,1), (2,1), (3,0), and (3,1),
and semiconducting with zero gap for (0,2) where the
DOS behaves as 4/|E| near Ep. The number of carbon
atoms per unit cell is given by 485,, »(= m? + mn +n?).
We should note that the network of (2,0) is topologically
equivalent to the Mackay and Terrones’s spongy graphite
derived from the P surface,® and (1,0) is one of O’Keeffe’s
polybenzenes.® If you prepare the honeycomb patches so
as that all the hexagonal corners sit not on the center of a
hexagon in Fig. 2, but just on the vertices of a honeycomb
lattice, i.e., the atomic sites, the resultant structures in-
clude the four coordinated carbon atoms at the place
where the four hexagonal faces of truncated octahedra
meet. One of the examples is displayed in Fig. 5(b). We
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(a)

FIG. 5. (a) Space filling by truncated octahedra, and (b)
another spongy graphite formed by the introduction of four
coordinated carbon atoms in a graphite sheet.

have already mentioned the two intrinsic features of the
local structure of a-C. Here we obtain the carbon net-
works with the mixture of sp? and sp® bondings, which
also spread spacially. Now we should emphasize that our
polyhedral construction is useful to consider the possible
local structures of the carbon network.

We expect that the immense variety of polyhedral
beauty must be hidden in disordered carbon materials.
Moreover, our results suggest that if we can control the
geometrical parameter, it means the electronic state be-
comes controllable. Here we introduce one of interesting
trials to synthesize a carbon material with controlling
the microscopic geometry. As is well known, zeolite has
a polyhedrally constructed structure. If the porous space
of zeolite is impregnated with a certain hydrocarbon, the
carbonization is carried out by heat treatment; further,
if the zeolite is removed with acid treatment, we may
obtain a carbon network as a copy of the microscopic
structure of the mother zeolite. Namely, zeolite plays
a role of template.’® Other ideas might open a way to
synthesize a carbon form.
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